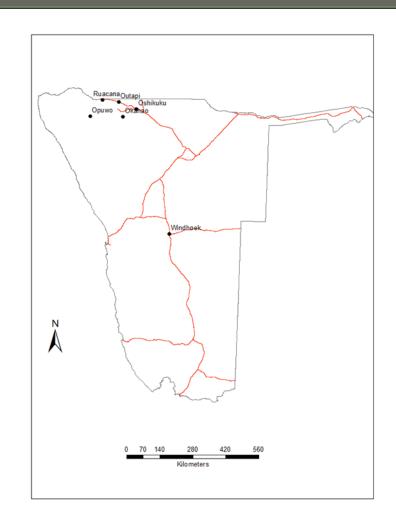
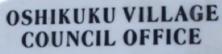
Geological Contribution to Urban Land-Use; Environmental Assessment of Municipal Waste Disposal Facilities in Outapi, Oshikuku, Okahao, Ruacana and Opuwo




### Table of Contents

- Introduction
- Objectives
- Local geology
- Hydrogeology
- Hydrology
- Waste management
  - >Sewage water treatment
  - >Solid waste treatment
- Recommendations
- Conclusions

### Introduction








### Introduction cont...





WAS OFFICIALLY INAUGURATED BY

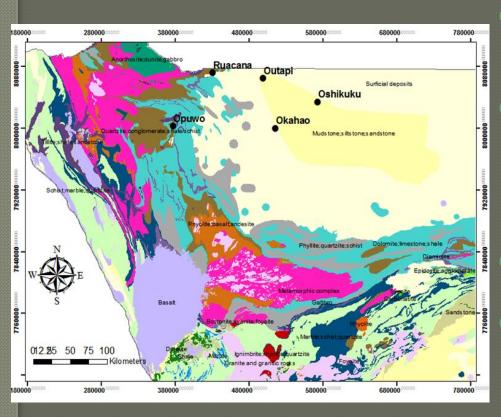
HON. JOHN PANDENI

MINISTER OF REGIONAL AND LOCAL GOVERNMENT, HOUSING AND RURAL DEVELOPMENT

ON

15 FEBRUARY 2007





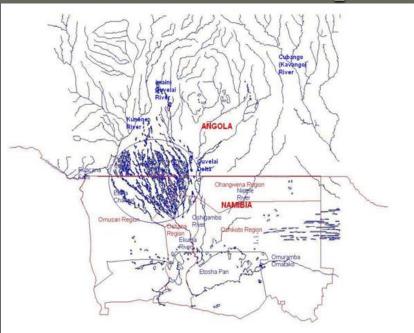



## Objectives

- Familiarization with principles of waste management in the towns of Opuwo, Ruacana, Okahao, Outapi and Oshikuku.
- Contributing to land use planning; waste disposed does not pose a threat to the environment and groundwater resources
- Identify areas of improvement in terms of waste management in the above mentioned towns.

## Local Geology




- Fransfontein Granitic
   Suite and Granite and
   Gnessitic Basement
   Sedimetary Rocks of
  - Sedimetary Rocks of
    Damaran Sequence
    (Nosib, Otavi and Mulden
    Group)- Carbonatitic
    rocks and sandstones
    Karoo Sequence (Basalt,
- sandstone and shale)

   Kalahari Sequence ( semi to unconsolidated
  - sediments of cretaceous to recent)

# Hydrogeology

| Name of aquifers<br>and aquitands,<br>Hydnogeological<br>dhanader | Maximum<br>thick-<br>ness<br>[m] | Lithology                                          | Recharge                                    | Formation,<br>Subgroup,<br>Group                  | Groundwater quality and<br>∨ulnerability                                |
|-------------------------------------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|
| Unconfined                                                        | Thin                             | Sand                                               |                                             | Recent                                            | Fresh, brackish during dry season, extremely vulnerable to pollution    |
| Kalahari Aquifers (mainly porous, locally fractured)              | 150                              | Calorete, lime-<br>stone; sand layers              | direct infiltration of<br>rainwater         | Andoni (Etosha<br>Limestone Member)               | Fresh, locally high nitrate con-<br>centration, vulnerable to pollution |
| locally llactured)                                                | 50                               | Silt, dayey sand;<br>calcrete layers               |                                             | Andoni                                            | Fresh to brackish                                                       |
|                                                                   | 70                               | Sand, calcrete                                     |                                             |                                                   | Brackish to saline, local fresh water<br>lenses                         |
| Confined                                                          | 100                              | Sand, gravel,                                      |                                             |                                                   | Fresh, Group B                                                          |
| Kalahari   Aquifers                                               | 60                               | Sand,<br>sandstone                                 | Recharged by                                |                                                   |                                                                         |
| (porous to<br>fractured)                                          | 180                              | Sand, calcareous                                   | the Oshanas                                 | Olukonda                                          | Freshto saline                                                          |
|                                                                   | 50                               | Sandstone,<br>conglomerate                         |                                             | Beiseb                                            |                                                                         |
|                                                                   | 100                              | Sandatone                                          |                                             | Ombalantu                                         |                                                                         |
| Karoo Sequence<br>Aquitard KSA                                    | 200                              |                                                    |                                             | Undifferentiated                                  |                                                                         |
|                                                                   | 100<br>140                       | Sandstone                                          |                                             | Kalkrand<br>Etjo                                  |                                                                         |
|                                                                   | 220                              | Sandatorie                                         |                                             | Prince Albert                                     |                                                                         |
|                                                                   | 160                              | Tillite                                            |                                             | Dwyka                                             |                                                                         |
| Mulden<br>Group<br>Aquitard, MGA                                  | 4200                             | Sandstone,<br>quartzite,<br>limestone,<br>dolomite |                                             | Owambo, Kombat,<br>Tschudi                        |                                                                         |
| Otavi Dolomite<br>Aquifer, ODA<br>(fractured,<br>partly karstic,  | 4000                             | Dolomite,<br>limestone                             | recharged in<br>the fractured<br>dolornites | Taurneb Subgroup                                  | Fresh<br>Vulnerable on exposed surfaces                                 |
| partly confined)                                                  | 2000                             |                                                    |                                             | Abenab Subgroup                                   |                                                                         |
| Nosib Group<br>Aquitard                                           | 1200                             | n/a                                                |                                             | Varianto,<br>Nabis                                |                                                                         |
| Basement<br>Aquidude,                                             | n/a                              | n/a                                                |                                             | Fransfontein<br>Granitic Suite,<br>Khoabendus Gr. |                                                                         |

## Hydrology



- Namibian part of the Basin is characterized by the "Oshanas"
- "Oshanas" are shallow, often vegetated, poorly defined but are interconnected flood channels and pans through which surface water flows slowly or may form pools depending on the intensity of the flood.



# WASTE WATER TREATMENT IN OBSERVED NORTHERN TOWNS





### Sewage Water Treatment cont.



## Oshikuku

HOSPITAL POND

TOWN COUNCIL POND





### Okahao



• The maturation pond is heavily covered by plants and overflowing.



## Ruacana and Opuwo



Damaged Membrane and no Effluent flow between ponds Maturation ponds used as drinking water for livestock No Fencing in opuwo





### Recommendations

- Removal of vegetation within the pond in order to optimize the pond performance.
- Installing monitoring boreholes to determine if contaminants are seeping.
- Monitoring the quality of the final pond water on a regular basis, potential contamination source since pond is not lined.
- Closing down the hospital ponds and link its sewer system to the new ponds
- Additional ponds to accommodate overflowing effluents
- Storm water diversion channels to direct water away sewer system.
- Provide other water sources for livestock as pond water quality may change.
- Regular maintenance of the ponds

# SOLID WASTE TREATMENT IN OBSERVED NORTHERN TOWNS

### Landfill Characteristics



- Burrow pit
- Landfills not lined, no leacheate collectors or groundwater monitoring installations
- Most are close/on the edge of "Oshanas"
- Basic infrastructure
- Low volume of waste





## Environmental hazards

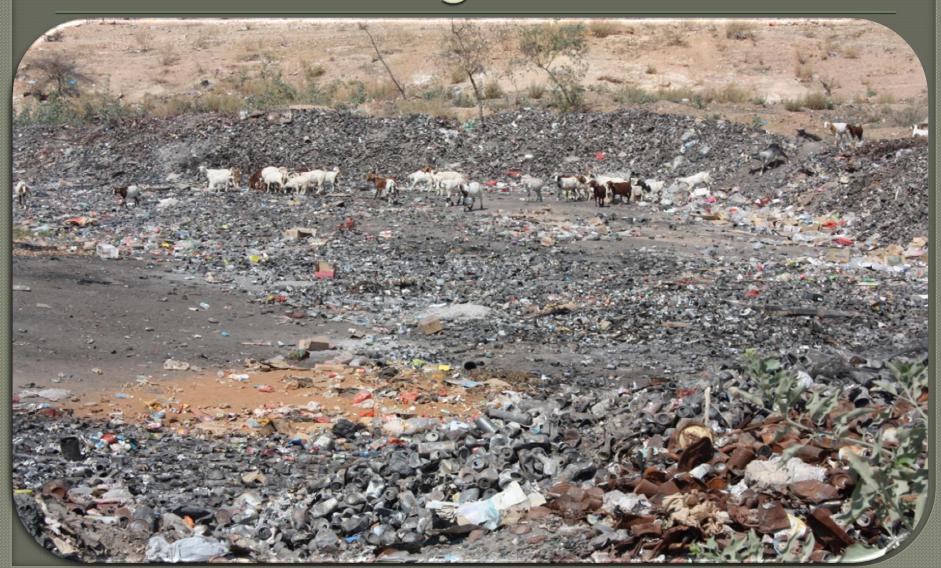


## Environmental Hazards



## Environmental Hazards




# Mitigation measures



# Mitigation measures



# Mitigation measures



### Recommendations

- Proper fencing to prevent waste from blowing outside the landfill contaminating surrounding areas.
- Security guard to guard and monitor the landfill and its fencing and also direct people on proper disposal methods on the site
- Waste segregation for proper disposing of vast amounts of waste produced in an environmentally friendly conscious manner. Different components of waste have very different properties and grouping them by type allows for proper processing or storage.
- Regular clean-ups of surrounding areas to prevent possible contamination and pollution

#### Recommendations cont...

- Implementation of composite liners, leachate collection and removal systems and groundwater monitoring systems
- Waste Audits
- Regular monitoring of dumpsite in order to ensure that any environmental impacts are identified and rectified
- Protective gear

# CONCLUSIONS

### Conclusions

- The wastes at towns differ in size and in the potential to threaten the environment.
- The weaknesses that were identified regarding waste management at the surveyed towns can be used as an opportunity for improvement at those towns as well as other towns in Namibia.
- This study concluded that from the towns that were surveyed all managed their waste to some degree but the different faults in their waste management methods needs to be addressed.

